Quartz is the second-most-abundant mineral in the Earth's continental crust, after feldspar. It is made up of a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall formula SiO2. There are many different varieties of quartz, several of which are semi-precious gemstones. Especially in Europe and the Middle East, varieties of quartz have been since antiquity the most commonly used minerals in the making of jewelry andhardstone carvings.

Contents

[hide]
  • 1 Crystal habit and structure
    • 1.1 α-quartz and β-quartz
  • 2 Occurrence
    • 2.1 Related silica minerals
    • 2.2 Synthetic quartz
  • 3 Uses
    • 3.1 Piezoelectricity
    • 3.2 Gemstone and lapidary varieties
      • 3.2.1 Coarsely crystalline varieties
        • 3.2.1.1 Citrine
        • 3.2.1.2 Rose quartz
        • 3.2.1.3 Amethyst
        • 3.2.1.4 Smoky quartz
        • 3.2.1.5 Milky quartz
      • 3.2.2 Microcrystalline varieties
      • 3.2.3 Varieties (according to microstructure)
      • 3.2.4 Synthetic and artificial treatments
  • 4 History
  • Crystal habit and structure

The Quartz crystal shape is a six-sided prism ending with six-sided pyramids at each end. In nature quartz crystals are often twinned, distorted, or so intergrown with adjacent crystals of quartz or other minerals as to only show part of this shape, or to lack obvious crystal faces altogether and appear massive. Well-formed crystals typically form in a 'bed' that has unconstrained growth into a void, but because the crystals must be attached at the other end to a matrix, only one termination pyramid is present. A quartz geode is such a situation where the void is approximately spherical in shape, lined with a bed of crystals pointing inward.

Occurrence

Quartz is an essential constituent of granite and other felsic igneous rocks. It is very common in sedimentary rocks such as sandstone and shale and is also present in variable amounts as an accessory mineral in most carbonate rocks. It is also a common constituent of schist, gneiss, quartzite and other metamorphic rocks. Because of its resistance to weathering it is very common in stream sediments and in residual soils. Quartz, therefore, occupies the lowest potential to weather in the Goldich dissolution series.

Quartz occurs in hydrothermal veins as gangue along with ore minerals. Large crystals of quartz are found in pegmatites. Well-formed crystals may reach several meters in length and weigh as much as 1,400 pounds (640 kg).

Naturally occurring quartz crystals of extremely high purity, necessary for the crucibles and other equipment used for growing silicon wafers in the semiconductor industry, are expensive and rare. A major mining location for high purity quartz is the Spruce Pine Gem Mine in Spruce Pine, North Carolina, United States.

Related silica minerals

Tridymite and cristobalite are high-temperature polymorphs of SiO2 that occur in high-silica volcanicrocks. Coesite is a denser polymorph of quartz found in some meteorite impact sites and in metamorphic rocks formed at pressures greater than those typical of the Earth's crust. Stishovite and Seifertite are yet denser and higher-pressure polymorphs of quartz found in some meteorite impact sites. Lechatelierite is an amorphous silica glass SiO2 which is formed by lightning strikes in quartz sand.

[edit]Synthetic quartz

Most quartz used in microelectronics is produced synthetically. Large, flawless and untwinned crystals are produced in an autoclave via thehydrothermal process. The process involves treating crushed natural quartz with hot aqueous solution of a base such as sodium hydroxide. The hydroxide serves as a "mineralizer", i.e. it helps dissolve the "nutrient" quartz. High temperatures are required, often around 675 °C. The dissolved quartz then recrystallizes at a seed crystal at slightly lower temperatures. Approximately 200 tons of quartz were produced in the US in 2005; large synthesis facilities exist throughout the world. Synthetic quartz is often evaluated on the basis of its Q factor, a measure of its piezoelectric response and an indicator of the purity of the crystal.

A synthetic silicon dioxide crystal grown by the hydrothermal method, about 19 cm long and weighing about 127 grams

Uses

Quartz is the source of many silicon compounds such as silicones (e.g. high performance polymers), silicon (e.g. microelectronics), and many other compounds of commercial importance. Quartz in the form of sand is reduced by carbothermic reaction as a first step in these energy-intensive processes.

Owing to its high thermal and chemical stability and abundance, quartz is widely used many large-scale applications related to abrasives, foundry materials, ceramics, and cements.[9]

Piezoelectricity

Quartz crystals have piezoelectric properties: they develop an electric potential upon the application ofmechanical stress. An early use of this property of quartz crystals was in phonograph pickups. A common piezoelectric uses of quartz today is as a crystal oscillator. The quartz clock is a familiar device using the mineral. The resonant frequency of a quartz crystal oscillator is changed by mechanically loading it, and this principle is used for very accurate measurements of very small mass changes in the quartz crystal microbalance and in thin-film thickness monitors.Quartz's piezoelectric properties were discovered by Jacques and Pierre Curie in 1880. The quartz oscillator or resonator was first developed by Walter Guyton Cady in 1921.[10] George Washington Pierce designed and patented quartz crystal oscillators in 1923.[11] Warren Marrison created the first quartz oscillator clock based on the work of Cady and Pierce in 1927.[12]

Gemstone and lapidary varieties

The most important distinction between types of quartz is that of macrocrystalline (individual crystals visible to the unaided eye) and themicrocrystalline or cryptocrystalline varieties (aggregates of crystals visible only under high magnification).

Coarsely crystalline varieties

Pure quartz, traditionally called rock crystal (sometimes called clear quartz), is colorless and transparent or translucent. Common colored varieties include citrine, rose quartz, amethyst, smoky quartz and milky quartz.

Citrine
Citrine

Citrine is a variety of quartz whose color ranges from a pale yellow to brown. Natural citrines are rare; most commercial citrines are heat-treated amethyst. Citrine contains traces of iron and is rarely found naturally. The name is derived fromLatin citrina which means "yellow".

Rose quartz
An elephant carved in rose quartz, 4 inches (10 cm) long

Rose quartz is a type of quartz which exhibits a pale pink to rose red hue. The color is usually considered as due to trace amounts of titanium, iron, or manganese, in the massive material. Some rose quartz contains microscopic rutileneedles which produces an asterism in transmitted light. Recent X-ray diffraction studies suggest that the color is due to thin microscopic fibers of possibly dumortierite within the massive quartz.

In crystal form (rarely found) it is called pink quartz and its color is thought to be caused by trace amounts of phosphateor aluminium. The color in crystals is apparently photosensitive and subject to fading. The first crystals were found in apegmatite found near Rumford, Maine, USA, but most crystals on the market come from Minas Gerais, Brazil.

Amethyst

Amethyst is a form of quartz that ranges from a bright to dark or dull purple color.

Smoky quartz

Smoky quartz is a gray, translucent version of quartz. It ranges in clarity from almost complete transparency to a brownish-gray crystal that is almost opaque.

Milky quartz
Milky quartz sample

Milky quartz may be the most common variety of crystalline quartz and can be found almost anywhere. The white color may be caused by minute fluid inclusions of gas, liquid, or both, trapped during the crystal formation. The cloudiness caused by the inclusions effectively bars its use in most optical and quality gemstone applications.

Microcrystalline varieties

The cryptocrystalline varieties are either translucent or mostly opaque, while the transparent varieties tend to be macrocrystalline. Chalcedony is a cryptocrystalline form of silica consisting of fine intergrowths of both quartz, and itsmonoclinic polymorph moganite.[17] Other opaque gemstone varieties of quartz, or mixed rocks including quartz, often including contrasting bands or patterns of color, are agate, onyx, carnelian, and jasper.

 

For more information about quartz try these links:

http://geology.com/minerals/quartz.shtml

http://www.gemstone.org/index.php?option=com_content&view=article&id=119:sapphire&catid=1:gem-by-gem&Itemid=14

http://www.mindat.org/min-3337.html

http://www.quartzpage.de/gen_occ.html